

shutterstock.com · 2306229927

Chapter 16 Corpuscular Aspect of Light

Prepared and Presented by: Mr. Mohamad Seif

BROBLEM

Given: speed of light in vacuum $c = 3 \times 10^8 m/s$; $1 \, eV =$

 $1.6 \times 10^{-19} J.$

The experiment represented in figure 1 may show evidence of this photoelectric effect.

A zinc plate is fixed on the conducting rod of an electroscope. The whole set-up is charged negatively.

- If we illuminate the plate by a lamp emitting white light rich with ultraviolet radiations (U.V), the leaves F and F' of the electroscope approach each other rapidly.
- 1) Due to what do the leaves approach?
- The plate has excess of electrons.
- When the plate is exposed to U.V radiations, electrons are extracted.
- This explains the discharge of the electroscope

2) The photoelectric effect shows evidence of an aspect of light. What is this aspect?

The photoelectric effect shows that the light possesses a corpuscular aspect of light or called particle aspect of light

In an experiment using a plate of cesium, a convenient apparatus allows us to measure the maximum kinetic energy K.E of an emitted electron corresponding to the wavelength λ of the incident radiation.

The variation of K.E as a function of λ is represented in the graph of figure 2.

The aim of this part is to determine the value of Planck's constant h and that of the extraction energy W_0 of cesium.

1)Write down the expression of the energy E of an incident photon, of wavelength λ in vacuum, in terms of λ , h and c

$$E=\frac{hc}{\lambda}$$

2)Show that the maximum kinetic energy K.E of an extracted electron may be written in the form $K.E = \frac{a}{\lambda} + b$, where a and b are constants.

and b are constants.

$$E = W_0 + K. E \Rightarrow K. E = E - W_0$$

$$K. E = \frac{hc}{\lambda} - W_0$$

Where a = hc and $b = -W_0$

3) Deduce the expression of the threshold wavelength λ_0 of cesium in terms of W_0 , h and c.

Using the previous equation:

$$K. E = \frac{hc}{\lambda_0} - W_0$$

For K. E = 0
$$\frac{hc}{\lambda_0} = \frac{hc}{\lambda_0}$$

$$W_0$$

$$W_0 = \frac{hc}{\lambda_0}$$

- 3) Referring to the graph:
 - a) Give the value of the threshold wavelength λ_0 of cesium.

From the graph, for K.E = 0

$$\lambda_0 = 0.66 \mu m$$

Be Smart ACADEMY

b) Determine the value of W_0 and that of h. ¹⁰

For
$$\lambda_0 = 0.66 \mu m$$

$$K.E = 0$$

$$0 = \frac{hc}{0.66 \times 10^{-6}} - W_0 \dots (1)$$

For
$$\lambda = 0.18 \mu m$$

$$K.E = 5eV$$

$$5 \times 1.6 \times 10^{-19} = \frac{hc}{0.18 \times 10^{-6}} - W_0$$

$$8 \times 10^{-19} = \frac{nc}{0.18 \times 10^{-6}} - W_0 \dots (2)$$

$$\begin{cases} \frac{hc}{0.66 \times 10^{-6}} - W_0 = 0 \dots \times (-1) \\ \frac{hc}{0.18 \times 10^{-6}} - W_0 = 8 \times 10^{-19} \end{cases}$$

$$\begin{cases} -\frac{hc}{0.66 \times 10^{-6}} + W_0 = 0 \text{ Math} \\ \frac{hc}{0.18 \times 10^{-6}} - W_0 = 8 \times 10^{-19} \end{cases}$$
 Add the two equation

$$-\frac{h \times 3 \times 10^{8}}{0.66 \times 10^{-6}} + \frac{h \times 3 \times 10^{8}}{0.18 \times 10^{-6}} = 8 \times 10^{-19}$$

$$-4.54 \times 10^{14}h + 16.66 \times 10^{14}h = 8 \times 10^{-19}$$

$$12.12 \times 10^{14}h = 8 \times 10^{-19}$$

$$h = \frac{8 \times 10^{-19}}{12.12 \times 10^{14}}$$

 $h = 6.6 \times 10^{-34} J.s$

$$W_0 = \frac{hc}{\lambda_0}$$

$$W_0 = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{0.66 \times 10^{-6}}$$

$$W_0 = 3 \times 10^{-19} J$$

BROBLEM

The object of this exercise is to determine, Planck's constant (h), as well as the threshold frequency ν_0 of potassium and the extraction energy W_0 of potassium and that of cesium when illuminated by monochromatic radiation of adjustable frequency ν .

Part A:

- 1)What aspect of light does the phenomenon of photoelectric effect show evidence of ?
- The phenomenon of photoelectric effect show evidence of corpuscular (particle) aspect of light
- 2)A monochromatic radiation is formed of photons. Give two characteristics of a photon.
- The photon have zero mass; speed in vacuum is c; zero charge and energy $E = h\nu = \frac{hc}{\lambda}$

3)For a pure metal, the incident photons of a monochromatic radiation provoke photoelectric emission. Give the condition for this emission to take place.

The emission of electron from the metal occurs when:

$$E_{ph} > W_0$$

Be Smart ACADEMY

$$\lambda < \lambda_0$$

Or

Part B: In the first experiment we use potassium, a convenient apparatus is used to measure the kinetic energy K.E of the electrons corresponding to frequency ν of the incident radiation. The obtained results are tabulated in the following table:

$\nu(Hz)$	K.E(e.V)
6×10^{14}	0.25
7×10^{14}	0.65
8×10^{14}	1.05
9×10^{14}	1.45
10×10^{14}	1.85

Given
$$1eV = 1.6 \times 10^{-19}J$$

1)Show that the kinetic energy of an extracted electron may be written in the form: K.E = av + b.

$$E = W_0 + K.E$$

$$hv = W_0 + K.E$$

$$K.E = hv - W_0$$

$$K.E = av + b$$

Where a = h and $b = -W_0$

2)Plot, on the graph paper, the curve representing the variation of the kinetic energy K.E versus n, using the following scale: x –axis: $1cm \rightarrow 1014Hz$. Y-axis: $1cm \rightarrow 0.5eV$

ν(Hz)	K.E(e.V)
6×10^{14}	0.25
7×10^{14}	0.65
8×10^{14}	1.05
9×10^{14}	1.45
10×10^{14}	1.85

3)Using the graph, determine: the value of Planck's constant h, and the threshold frequency ν_0 of potassium.

The obtained curve is straight line not passing through the origin having a slope h

$$h = \frac{K.E_2 - K.E_1}{\nu_2 - \nu_1}$$

$$h = \frac{(1.85 - 0.25) \times 1.6 \times 10^{-19}}{(10 - 6) \times 10^{14}}$$

ACADEMY

$$h = 6.6 \times 10^{-34} J.s$$

The electron is extracted without velocity (K.E = 0); The metal is illuminated with a radiation of frequency ν_0 equal to threshold frequency.

The threshold frequency corresponds to the intersection of the obtained line with the axis of abscissa.

$$\nu_0 = 5.5 \times 10^{14} Hz$$

3) Deduce the value of the extraction energy W_0 of potassium.

$$W_0 = h \times v_0$$
 $W_0 = 6.6 \times 10^{-34} \times 5.5 \times 10^{14}$
 $W_0 = 3.52 \times 10^{-19} \text{J}$
 $W_0 = \frac{3.52 \times 10^{-19} \text{J}}{1.6 \times 10^{-19} \text{J}}$

$$W_0 = 2.2eV$$

Part C:

In the second experiment cesium have been used instead of potassium, we obtain the following values:

$$K.E = 1 \, eV \, \text{for} \, \nu = 7 \times 10^{14} \, Hz \, v = 7$$

1) Plot, with justification on the preceding system of axes, the graph of the variation of K.E as a function of ν .

ACADEMY

The new curve is parallel to the previous line and passing through the point $(7 \times 10^{14} \text{Hz}; 1 \text{eV})$.

For cesium: K.E = 1 eV for $\nu = 7 \times 10^{14} Hz$.

2) Deduce from this graph the extraction energy W'_0 of cesium.

Using the relation:
$$E = w'_0 + K.E$$
 $w'_0 = h\nu - K.E$

$$W'_0 = 6.6 \times 10^{-34} \times 7 \times 10^{14} - 1 \times 1.6 \times 10^{-19}$$

 $w'_0 = 3.02 \times 10^{-19} \text{J}$

$$w'_0 = \frac{3.02 \times 10^{-19} \text{J}}{1.6 \times 10^{-19}} \implies w'_0 = 1.9 \text{eV}$$

